
1. Introduction to Flow Control in C++

Flow control in C++ refers to the order in which statements of a program are executed. By default, a C++
program follows sequential execution, meaning statements run one after another from top to bottom.
However, real-world problems require programs to make decisions, repeat actions, and choose
different paths based on conditions.

Flow control statements allow programmers to control the execution path of a program. These
statements help in implementing logic, decision-making, and branching. The most commonly used flow
control statements in C++ are:

 if statement
 if-else statement
 else-if ladder
 nested if-else

2. Need for Decision Making in Programs

In real life, decisions are made continuously:

 If it rains, take an umbrella
 If marks ≥ 40, student passes
 If password is correct, allow login

Similarly, programs must also take decisions based on conditions. Without decision-making statements, a
program would always behave the same way regardless of input.

Decision-making allows:

 Execution of different code blocks
 Logical problem solving
 Dynamic program behavior
 User-based output generation

C++ provides conditional statements to handle such decision-making efficiently.

3. Types of Flow Control Statements in C++

Flow control statements in C++ are broadly divided into:

1. Selection Statements
o if
o if-else
o else-if ladder
o nested if-else
o switch (not covered here)

2. Iteration Statements
o for

o while
o do-while

3. Jump Statements
o break
o continue
o goto
o return

This topic focuses mainly on selection statements using if-else.

4. The if Statement

The if statement is the simplest form of decision-making in C++. It executes a block of code only when a
condition is true.

Syntax
if (condition)
{
 statements;
}

Explanation

 The condition is evaluated first.
 If the condition is true (non-zero), the statements inside the if block are executed.
 If the condition is false (zero), the statements are skipped.

Example
int age = 20;
if (age >= 18)
{
 cout << "Eligible to vote";
}

5. Working of the if Statement

The working of an if statement follows these steps:

1. Program reaches the if statement
2. Condition is evaluated
3. If condition is true → execute if block
4. If condition is false → skip if block
5. Control moves to the next statement

Important Points

 Condition can be relational or logical
 Curly braces {} are optional for single statements but recommended

 Zero is treated as false, non-zero as true

6. The if-else Statement

The if-else statement provides two alternative paths of execution. It executes one block when the
condition is true and another block when the condition is false.

Syntax

if (condition)
{
 true block;
}
else
{
 false block;
}
Example
int number = 5;
if (number % 2 == 0)
{
 cout << "Even number";
}
else
{
 cout << "Odd number";
}

7. Working of the if-else Statement

Steps involved:

1. Condition is evaluated
2. If condition is true → if block executes
3. If condition is false → else block executes
4. Only one block executes at a time

Advantages

 Clear decision-making
 Improves program logic
 Eliminates ambiguity

8. Flowchart of if-else Statement

A flowchart is a diagrammatic representation of program logic.

Flowchart Explanation

1. Start
2. Evaluate condition
3. If condition is true → execute true block
4. If condition is false → execute false block
5. End

Flowcharts help beginners understand the program flow visually and reduce logical errors.

9. The else-if Ladder

The else-if ladder is used when multiple conditions need to be checked.

Syntax
if (condition1)
{
 statement1;
}
else if (condition2)
{
 statement2;
}
else if (condition3)
{
 statement3;
}
else
{
 default statement;
}

Example
int marks = 75;

if (marks >= 90)

 cout << "Grade A";

else if (marks >= 75)

 cout << "Grade B";

else if (marks >= 50)

 cout << "Grade C";

else

 cout << "Fail";

Key Points

 Conditions are checked top to bottom
 First true condition executes
 Remaining conditions are skipped

10. Nested if-else Statement

Nested if-else means placing one if-else inside another.

Syntax
if (condition1)
{
 if (condition2)
 {
 statement;
 }
 else
 {
 statement;
 }
}
else
{
 statement;
}

Example

int a = 10, b = 20;

if (a > b)
{
 cout << "a is greater";
}
else
{
 cout << "b is greater";
}

Uses

 Complex decision-making
 Multi-level conditions
 Real-world logical problems

11. Common Errors in if-else Statements

Some common mistakes include:

 Using = instead of ==
 Missing curly braces
 Incorrect logical conditions
 Deep nesting causing confusion

Example of Error
if (x = 5) // Wrong

Correct
if (x == 5)

12. Best Practices for Using if-else

 Use proper indentation
 Keep conditions simple
 Avoid unnecessary nesting
 Use meaningful variable names
 Comment complex logic
 Good practices improve readability, maintainability, and debugging.

13. Advantages of if-else Statements

 Easy to understand
 Flexible decision-making
 Widely used in real applications
 Foundation for advanced logic

14. Applications of if-else in C++

 Login authentication
 Result calculation
 Menu-driven programs
 Game logic
 Input validation
 Banking and billing systems

15. Conclusion

Flow control using if and if-else statements is a fundamental concept in C++. It allows programs to
make decisions and execute different blocks of code based on conditions. Understanding if-else is
essential for building logical, efficient, and real-world applications.

A strong foundation in flow control helps learners progress smoothly to advanced programming
concepts.

