1. Introduction to Flow Control in C++

Flow control in C++ refers to the order in which statements of a program are executed. By default, a C++
program follows sequential execution, meaning statements run one after another from top to bottom.
However, real-world problems require programs to make decisions, repeat actions, and choose
different paths based on conditions.

Flow control statements allow programmers to control the execution path of a program. These
statements help in implementing logic, decision-making, and branching. The most commonly used flow
control statements in C++ are:

o ifstatement

o if-else statement

e else-if ladder
¢ nested if-else

2. Need for Decision Making in Programs

In real life, decisions are made continuously:
o Ifitrains, take an umbrella
e Ifmarks = 40, student passes

o Ifpassword is correct, allow login

Similarly, programs must also take decisions based on conditions. Without decision-making statements, a
program would always behave the same way regardless of input.

Decision-making allows:
o Execution of different code blocks
e Logical problem solving
e Dynamic program behavior

e User-based output generation

C++ provides conditional statements to handle such decision-making efficiently.
3. Types of Flow Control Statements in C++

Flow control statements in C++ are broadly divided into:

1. Selection Statements

o if

o if-else

o else-if ladder

o nested if-else

o switch (not covered here)

2. Iteration Statements
o for



o while

o do-while
3. Jump Statements
break
continue
goto
return

O O O O

This topic focuses mainly on selection statements using if-else.
4. The if Statement

The if statement is the simplest form of decision-making in C++. It executes a block of code only when a
condition is true.

Syntax
if (condition)

{

statements;

}

Explanation

e The condition is evaluated first.
o If the condition is true (non-zero), the statements inside the if block are executed.
o If'the condition is false (zero), the statements are skipped.

Example

cout << "Eligible to vote";

5. Working of the if Statement

The working of an if statement follows these steps:

Program reaches the if statement
Condition is evaluated

If condition is true — execute if block
If condition is false — skip if block
Control moves to the next statement

SRRl M

Important Points

e Condition can be relational or logical
e Curly braces {} are optional for single statements but recommended



e Zerois treated as false, non-zero as true
6. The if-else Statement

The if-else statement provides two alternative paths of execution. It executes one block when the
condition is true and another block when the condition is false.

Syntax
if (condition)

{

true block;

}

else

{

false block;

int number = 5;
if (number % 2 == 0)
{

cout << "Even number";

}

else

{

cout << "0dd number";

}
7. Working of the if-else Statement

Steps involved:

1. Condition is evaluated

2. If condition is true — if block executes

3. If condition is false — else block executes

4. Only one block executes at a time
Advantages

e (lear decision-making
e Improves program logic
o Eliminates ambiguity



8. Flowchart of if-else Statement

A flowchart is a diagrammatic representation of program logic.

Flowchart Explanation

Start

Evaluate condition

If condition is true — execute true block
If condition is false — execute false block
End

v Wi

Flowcharts help beginners understand the program flow visually and reduce logical errors.

9. The else-if Ladder

The el1se-if ladder is used when multiple conditions need to be checked.

Syntax
if (condition1)

{

statementl;

}

else if (condition2)

{

statement?2;

}

else if (condition3)

{

statement3;

}

else

{

default statement;

}



Example

if (marks >=90)
cout << "Grade A";
else if (marks >=75)
cout << "Grade B";
else if (marks >= 50)
cout << "Grade C";
else

cout << "Fail";

Key Points

e Conditions are checked top to bottom
o First true condition executes
o Remaining conditions are skipped

10. Nested if-else Statement

Nested if-else means placing one if-else inside another.

Syntax

if (condition1)

{
if (condition2)
{

statement;

}

else

{

statement;

}
}

else

{

statement;

}




Example
inta=10,b =20;

if (@>h)
{

cout << "ais greater";

}

else

{

cout << "b is greater";

e Complex decision-making
e Multi-level conditions
o Real-world logical problems

11. Common Errors in if-else Statements

Some common mistakes include:

e Using = instead of ==

e Missing curly braces

e Incorrect logical conditions

e Deep nesting causing confusion

Example of Error
if (x=5) // Wrong

Correct

12. Best Practices for Using if-else

e Use proper indentation

o Keep conditions simple

e Avoid unnecessary nesting

e Use meaningful variable names

e Comment complex logic

e Good practices improve readability, maintainability, and debugging.



13. Advantages of if-else Statements

e Easy to understand

o Flexible decision-making

e Widely used in real applications
e Foundation for advanced logic

14. Applications of if-else in C++

e Login authentication

e Result calculation

e Menu-driven programs

e Game logic

e Input validation

e Banking and billing systems

15. Conclusion

Flow control using if and if-else statements is a fundamental concept in C++. It allows programs to
make decisions and execute different blocks of code based on conditions. Understanding if-else is
essential for building logical, efficient, and real-world applications.

A strong foundation in flow control helps learners progress smoothly to advanced programming
concepts.



